Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(2): e1011104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730466

RESUMO

A small proportion of human T-cell leukemia virus type-1 (HTLV-1)-infected individuals develop adult T-cell leukemia/lymphoma, a chemotherapy-resistant lymphoproliferative disease with a poor prognosis. HTLV-1-specific cytotoxic T lymphocytes (CTLs), potential anti-tumor/virus effectors, are impaired in adult T-cell leukemia/lymphoma patients. Here, using Japanese monkeys naturally infected with simian T-cell leukemia/T-lymphotropic virus type-1 (STLV-1) as a model, we demonstrate that short-term-cultured autologous peripheral blood mononuclear cells (PBMCs) can serve as a therapeutic vaccine to activate such CTLs. In a screening test, STLV-1-specific CTL activity was detectable in 8/10 naturally STLV-1-infected monkeys. We conducted a vaccine study in the remaining two monkeys with impaired CTL responses. The short-term-cultured PBMCs of these monkeys spontaneously expressed viral antigens, in a similar way to PBMCs from human HTLV-1 carriers. The first monkey was subcutaneously inoculated with three-day-cultured and mitomycin C (MMC)-treated autologous PBMCs, and then boosted with MMC-treated autologous STLV-1-infected cell line cells. The second monkey was inoculated with autologous PBMC-vaccine alone twice. In addition, a third monkey that originally showed a weak STLV-1-specific CTL response was inoculated with similar autologous PBMC-vaccines. In all three vaccinated monkeys, marked activation of STLV-1-specific CTLs and a mild reduction in the STLV-1 proviral load were observed. Follow-up analyses on the two monkeys vaccinated with PBMCs alone indicated that STLV-1-specific CTL responses peaked at 3-4 months after vaccination, and then diminished but remained detectable for more than one year. The significant reduction in the proviral load and the control of viral expression were associated with CTL activation but also diminished 6 and 12 months after vaccination, respectively, suggesting the requirement for a booster. The vaccine-induced CTLs in these monkeys recognized epitopes in the STLV-1 Tax and/or Envelope proteins, and efficiently killed autologous STLV-1-infected cells in vitro. These findings indicated that the autologous PBMC-based vaccine could induce functional STLV-1-specific CTLs in vivo.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Vírus Linfotrópico T Tipo 1 de Símios , Linfócitos T Citotóxicos , Animais , Humanos , Leucócitos Mononucleares , Macaca fuscata , Provírus , Vacinação
2.
Cancer Lett ; 553: 215983, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36404569

RESUMO

Peritoneal metastasis is one of the most frequent causes of death in several types of advanced cancers; however, the underlying molecular mechanisms remain largely unknown. In this study, we exploited multicolor fluorescent lineage tracking to investigate the clonality of peritoneal metastasis in mouse xenograft models. When peritoneal metastasis was induced by intraperitoneal or orthotopic injection of multicolored cancer cells, each peritoneally metastasized tumor displayed multicolor fluorescence regardless of metastasis sites, indicating that it consists of multiclonal cancer cell populations. Multicolored cancer cell clusters form within the peritoneal cavity and collectively attach to the peritoneum. In vitro, peritoneal lavage fluid or cleared ascitic fluid derived from cancer patients induces cancer cell clustering, which is inhibited by anticoagulants. Cancer cell clusters formed in vitro and in vivo are associated with fibrin formation. Furthermore, tissue factor knockout in cancer cells abrogates cell clustering, peritoneal attachment, and peritoneal metastasis. Thus, we propose that cancer cells activate the coagulation cascade via tissue factor to form fibrin-mediated cell clusters and promote peritoneal attachment; these factors lead to the development of multiclonal peritoneal metastasis and may be therapeutic targets.


Assuntos
Neoplasias Peritoneais , Peritônio , Camundongos , Animais , Humanos , Peritônio/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo , Tromboplastina/uso terapêutico , Fibrinogênio , Neoplasias Peritoneais/patologia , Análise por Conglomerados , Fibrina/metabolismo , Fibrina/uso terapêutico
3.
Cancer Lett ; 526: 335-345, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775002

RESUMO

Diffuse-type gastric carcinoma (DGC) has a poor prognosis due to its rapid diffusive infiltration and frequent peritoneal dissemination. DGC is associated with massive fibrosis caused by aberrant proliferation of cancer-associated fibroblasts (CAFs). Previously, we reported that direct heterocellular interaction between cancer cells and CAFs is important for the peritoneal dissemination of DGC. In this study, we aimed to identify and target the molecules that mediate such heterocellular interactions. Monoclonal antibodies (mAbs) against intact DGC cells were generated and subjected to high-throughput screening to obtain several mAbs that inhibit the adhesion of DGC cells to CAFs. Immunoprecipitation and mass spectrometry revealed that all mAbs recognized integrin α5 complexed with integrin ß1. Blocking integrin α5 in DGC cells or fibronectin, a ligand of integrin α5ß1, deposited on CAFs abrogated the heterocellular interaction. Administration of mAbs or knockout of integrin α5 in DGC cells suppressed their invasion led by CAFs in vitro and peritoneal dissemination in a mouse xenograft model. Altogether, these findings demonstrate that integrin α5 mediates the heterotypic cancer cell-fibroblast interaction during peritoneal dissemination of DGC and may thus be a therapeutic target.


Assuntos
Fibroblastos/metabolismo , Integrina alfa5/metabolismo , Neoplasias Gástricas/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos , Transfecção
4.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503119

RESUMO

Diffuse-type gastric carcinoma (DGC) exhibits aggressive progression associated with rapid infiltrative growth, massive fibrosis, and peritoneal dissemination. Gene amplification of Met and fibroblast growth factor receptor 2 (FGFR2) receptor tyrosine kinases (RTKs) has been observed in DGC. However, the signaling pathways that promote DGC progression downstream of these RTKs remain to be fully elucidated. We previously identified an oncogenic tyrosine phosphatase, SHP2, using phospho-proteomic analysis of DGC cells with Met gene amplification. In this study, we characterized SHP2 in the progression of DGC and assessed the therapeutic potential of targeting SHP2. Although SHP2 was expressed in all gastric carcinoma cell lines examined, its tyrosine phosphorylation preferentially occurred in several DGC cell lines with Met or FGFR2 gene amplification. Met or FGFR inhibitor treatment or knockdown markedly reduced SHP2 tyrosine phosphorylation. Knockdown or pharmacological inhibition of SHP2 selectively suppressed the growth of DGC cells addicted to Met or FGFR2, even when they acquired resistance to Met inhibitors. Moreover, SHP2 knockdown or pharmacological inhibition blocked the migration and invasion of Met-addicted DGC cells in vitro and their peritoneal dissemination in a mouse xenograft model. These results indicate that SHP2 is a critical regulator of the malignant progression of RTK-addicted DGC and may be a therapeutic target.

5.
Biochem Biophys Res Commun ; 574: 104-109, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34455369

RESUMO

Immunomodulatory imide drugs (IMiDs), such as lenalidomide and pomalidomide, exert pleiotropic effects, e.g., antitumor effects in multiple myeloma, by binding the protein Cereblon and altering its substrate specificity. Lenalidomide is approved for the treatment of adult T-cell leukemia/lymphoma (ATL) caused by human T-cell leukemia virus type 1 (HTLV-1), although the precise mechanisms responsible for its effectiveness have not been fully elucidated. Here, we used HTLV-1-infected cell lines to investigate how IMiDs exert anti-ATL effects. In three of four tested HTLV-1-infected cell lines, the cells treated with lenalidomide or pomalidomide exhibited mild growth suppression without apoptosis, which was associated with decreased IRF4, c-Myc, and phosphorylated STAT3 levels as well as enhanced SOCS3 expression. Additionally, the levels of enhancer of zeste homolog 2 (EZH2) and trimethyl histone 3 Lys27 (H3K27me3) were decreased following IMiD treatment in all three susceptible cell lines. An IMiD-mediated reduction of EZH2 and H3K27me3 levels was also observed in a multiple myeloma cell line. Furthermore, treatment with an EZH2-inhibitor reproduced the IMiD-mediated effects in HTLV-1-infected cells and multiple myeloma cells. These findings strongly suggest that a reduction of EZH2 expression is involved in the mechanism underlying the antitumor effects of IMiD.


Assuntos
Antivirais/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Infecções por HTLV-I/tratamento farmacológico , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Lenalidomida/farmacologia , Talidomida/análogos & derivados , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Infecções por HTLV-I/patologia , Humanos , Testes de Sensibilidade Microbiana , Talidomida/farmacologia
6.
Oncogenesis ; 10(3): 25, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677467

RESUMO

Met gene amplification has been found in a subset of malignant carcinomas, including diffuse-type gastric carcinoma (DGC), which has a poor prognosis owing to rapid infiltrative invasion and frequent peritoneal dissemination. Met is considered a promising therapeutic target for DGC. However, DGC cells with Met gene amplification eventually acquire resistance to Met inhibitors. Therefore, identification of alternate targets that mediate Met signaling and confer malignant phenotypes is critical. In this study, we conducted a phosphoproteomic analysis of DGC cells possessing Met gene amplification and identified Pleckstrin Homology Domain Containing A5 (PLEKHA5) as a protein that is tyrosine-phosphorylated downstream of Met. Knockdown of PLEKHA5 selectively suppressed the growth of DGC cells with Met gene amplification by inducing apoptosis, even though they had acquired resistance to Met inhibitors. Moreover, PLEKHA5 silencing abrogated the malignant phenotypes of Met-addicted DGC cells, including peritoneal dissemination in vivo. Mechanistically, PLEKHA5 knockdown dysregulates glycolytic metabolism, leading to activation of the JNK pathway that promotes apoptosis. These results indicate that PLEKHA5 is a novel downstream effector of amplified Met and is required for the malignant progression of Met-addicted DGC.

7.
Retrovirology ; 16(1): 23, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438973

RESUMO

Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other inflammatory diseases. There is no disease-specific difference in viral strains, and it is unclear how HTLV-1 causes such different diseases manifesting as lymphoproliferation or inflammation. Although some progress has been made in therapies for these diseases, the prognosis for ATL is still dismal and HAM/TSP remains an intractable disease. So far, two regulatory proteins of HTLV-1, Tax and HBZ, have been well studied and shown to have pleiotropic functions implicated in viral pathogenesis. Tax in particular can strongly activate NFκB, which is constitutively activated in HTLV-1-infected cells and considered to contribute to both oncogenesis and inflammation. However, the expression level of Tax is very low in vivo, leading to confusion in understanding its role in viral pathogenesis. A series of studies using IL-2-dependent HTLV-1-infected cells indicated that IL-10, an anti-inflammatory/immune suppressive cytokine, could induce a proliferative phenotype in HTLV-1-infected cells. In addition, type I interferon (IFN) suppresses HTLV-1 expression in a reversible manner. These findings suggest involvement of host innate immunity in the switch between lymphoproliferative and inflammatory diseases as well as the regulation of HTLV-1 expression. Innate immune responses also affect another important host determinant, Tax-specific cytotoxic T lymphocytes (CTLs), which are impaired in ATL patients, while activated in HAM/TSP patients. Activation of Tax-specific CTLs in ATL patients after hematopoietic stem cell transplantation indicates Tax expression and its fluctuation in vivo. A recently developed anti-ATL therapeutic vaccine, consisting of Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients and exhibited favorable clinical outcomes, unless Tax-defective ATL clones emerged. These findings support the significance of Tax in HTLV-1 pathogenesis, at least in part, and encourage Tax-targeted immunotherapy in ATL. Host innate and acquired immune responses induce host microenvironments that modify HTLV-1-encoded pathogenesis and establish a complicated network for development of diseases in HTLV-1 infection. Both host and viral factors should be taken into consideration in development of therapeutic and prophylactic strategies in HTLV-1 infection.


Assuntos
Genes pX , Infecções por HTLV-I/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Imunoterapia , Leucemia-Linfoma de Células T do Adulto/terapia , Animais , Infecções por HTLV-I/terapia , Humanos , Leucemia-Linfoma de Células T do Adulto/imunologia , Paraparesia Espástica Tropical/imunologia , Paraparesia Espástica Tropical/terapia
8.
Cancer Sci ; 110(3): 849-857, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30666755

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative disease caused by human T-cell leukemia virus type 1 (HTLV-1). Multi-agent chemotherapy can reduce ATL cells but frequently allows relapses within a short period of time. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is now a standard therapy for ATL in Japan as it can achieve long-term remission in approximately one-third of recipient ATL patients; however, it also has a risk of treatment-related mortality. Allo-HSCT often induces HTLV-1 Tax-specific cytotoxic T cells (CTL) as well as graft-versus-host (GVH) response in ATL patients. This observation led to development of a new therapeutic vaccine to activate Tax-specific CTL, anticipating anti-ATL effects without GVH response. The newly developed Tax-DC vaccine consists of autologous dendritic cells pulsed with Tax peptides corresponding to CTL epitopes that have been identified in post-allo-HSCT ATL patients. In a pilot study of Tax-DC therapy in three ATL patients after various initial therapies, two patients survived for more than 4 years after vaccination without severe adverse effects (UMIN000011423). The Tax-DC vaccine is currently under phase I trial, showing a promising clinical outcome so far. These findings indicate the importance of patients' own HTLV-1-specific T-cell responses in maintaining remission and provide a new approach to anti-ATL immunotherapy targeting Tax. Although Tax-targeted vaccination is ineffective against Tax-negative ATL cells, it can be a safe alternative maintenance therapy for Tax-positive ATL and may be further applicable for treatment of indolent ATL or even prophylaxis of ATL development among HTLV-1-carriers.


Assuntos
Vacinas Anticâncer/imunologia , Produtos do Gene tax/imunologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Animais , Infecções por HTLV-I/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Humanos , Projetos Piloto , Linfócitos T Citotóxicos/imunologia
9.
PLoS Pathog ; 13(9): e1006597, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28910419

RESUMO

Human T-cell leukemia virus type-1 (HTLV-1) causes two distinct diseases, adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Since there are no disease-specific differences among HTLV-1 strains, the etiological mechanisms separating these respective lymphoproliferative and inflammatory diseases are not well understood. In this study, by using IL-2-dependent HTLV-1-infected T-cell lines (ILTs) established from patients with ATL and HAM/TSP, we demonstrate that the anti-inflammatory cytokine IL-10 and its downstream signals potentially act as a switch for proliferation in HTLV-1-infected cells. Among six ILTs used, ILTs derived from all three ATL patients grew much faster than those from three HAM/TSP patients. Although most of the ILTs tested produced IFN-γ and IL-6, the production of IL-10 was preferentially observed in the rapid-growing ILTs. Interestingly, treatment with exogenous IL-10 markedly enhanced proliferation of the slow-growing HAM/TSP-derived ILTs. The IL-10-mediated proliferation of these ILTs was associated with phosphorylation of STAT3 and induction of survivin and IRF4, all of which are characteristics of ATL cells. Knockdown of STAT3 reduced expression of IL-10, implying a positive-feedback regulation between STAT3 and IL-10. STAT3 knockdown also reduced survivin and IRF4 in the IL-10- producing or IL-10- treated ILTs. IRF4 knockdown further suppressed survivin expression and the cell growth in these ILTs. These findings indicate that the IL-10-mediated signals promote cell proliferation in HTLV-1-infected cells through the STAT3 and IRF4 pathways. Our results imply that, although HTLV-1 infection alone may not be sufficient for cell proliferation, IL-10 and its signaling pathways within the infected cell itself and/or its surrounding microenvironment may play a critical role in pushing HTLV-1-infected cells towards proliferation at the early stages of HTLV-1 leukemogenesis. This study provides useful information for understanding of disease mechanisms and disease-prophylactic strategies in HTLV-1 infection.


Assuntos
Proliferação de Células/fisiologia , Vírus Linfotrópico T Tipo 1 Humano , Interleucina-10/metabolismo , Leucemia-Linfoma de Células T do Adulto/imunologia , Transdução de Sinais , Citocinas/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Paraparesia Espástica Tropical/imunologia , Fator de Transcrição STAT3/metabolismo
10.
Breast Cancer Res ; 16(3): R57, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24890385

RESUMO

INTRODUCTION: Transforming growth factor-ßs (TGF-ßs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-ß antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-ß are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. METHODS: Using a breast cancer progression model that exemplifies the dual role of TGF-ß, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-ß-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. RESULTS: TGF-ß-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-ß action. An in vivo-weighted TGF-ß/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-ß/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. CONCLUSIONS: Tumor-suppressive effects of TGF-ß persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-ß antagonists.


Assuntos
Neoplasias da Mama/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Efrinas/metabolismo , Feminino , Humanos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno , Receptor EphA2/metabolismo , Proteína Smad2/genética , Proteína Smad3/biossíntese , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/biossíntese , Proteínas Supressoras de Tumor/antagonistas & inibidores
11.
Mol Cancer Res ; 10(10): 1389-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22878587

RESUMO

TGF-ß plays a dual role in epithelial carcinogenesis with the potential to either suppress or promote tumor progression. We found that levels of Smad3 mRNA, a critical mediator of TGF-ß signaling, are reduced by approximately 60% in human breast cancer. We therefore used conditionally immortalized mammary epithelial cells (IMEC) of differing Smad3 genotypes to quantitatively address the Smad3 requirement for different biologic responses to TGF-ß. We found that a two-fold reduction in Smad3 gene dosage led to complex effects on TGF-ß responses; the growth-inhibitory response was retained, the pro-apoptotic response was lost, the migratory response was reduced, and the invasion response was enhanced. Loss of the pro-apoptotic response in the Smad3(+/-) IMECs correlated with loss of Smad3 binding to the Bcl-2 locus, whereas retention of the growth-inhibitory response in Smad3 IMECs correlated with retention of Smad3 binding to the c-Myc locus. Addressing the integrated outcome of these changes in vivo, we showed that reduced Smad3 levels enhanced metastasis in two independent models of metastatic breast cancer. Our results suggest that different biologic responses to TGF-ß in the mammary epithelium are differentially affected by Smad3 dosage and that a mere two-fold reduction in Smad3 is sufficient to promote metastasis.


Assuntos
Neoplasias da Mama/patologia , Epitélio/metabolismo , Dosagem de Genes/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Proteína Smad3/genética , Fator de Crescimento Transformador beta/farmacologia , Animais , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Elementos Facilitadores Genéticos/genética , Epitélio/efeitos dos fármacos , Epitélio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Camundongos , Metástase Neoplásica , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Smad3/metabolismo
12.
J Biol Chem ; 286(37): 32502-12, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21795712

RESUMO

Transforming growth factor-ß (TGF-ß) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-ß signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-ß signaling that functions as a substrate-selective cofactor of Arkadia. Overexpression of RB1CC1 enhanced TGF-ß signaling, and knockdown of endogenous RB1CC1 attenuated TGF-ß-induced expression of target genes as well as TGF-ß-induced cytostasis. RB1CC1 down-regulated the protein levels of c-Ski but not SnoN by enhancing the activity of Arkadia E3 ligase toward c-Ski. Substrate selectivity is primarily attributable to the physical interaction of RB1CC1 with substrates, suggesting its role as a scaffold protein. RB1CC1 thus appears to play a unique role as a modulator of TGF-ß signaling by restricting substrate specificity of Arkadia.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética
13.
J Biochem ; 147(4): 545-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19959502

RESUMO

Arkadia is a positive regulator of transforming growth factor-beta (TGF-beta) signalling, which induces ubiquitylation and proteasome-dependent degradation of negative regulators of the TGF-beta signalling pathway, i.e. Smad7, c-Ski and SnoN. In the present study, we examined the roles of Arkadia in human cancer cells. We first examined the expression of Arkadia in 20 cancer cell lines and 2 non-cancerous cell lines, and found that it was expressed ubiquitously at both the mRNA and protein levels. Interestingly, levels of expression of c-Ski protein, one of the substrates of Arkadia, were not correlated with those of c-Ski mRNA. Arkadia induced down-regulation of c-Ski protein expression in many cell lines examined, but did not in certain cell lines with high levels of expression of c-Ski protein. We also found that knockdown of Arkadia attenuated the induction of TGF-beta target genes, whereas ectopically expressed Arkadia enhanced it. Notably, over-expression of Arkadia inhibited the growth of HepG2 cells in the presence as well as the absence of TGF-beta stimulation. Arkadia thus regulates the levels of expression of c-Ski protein in cell-type-dependent fashion, and exhibits a tumour suppressor function by inhibiting tumour cell growth.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
14.
J Biol Chem ; 282(28): 20492-501, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17510063

RESUMO

Transforming growth factor-beta (TGF-beta) signaling is controlled by a variety of regulators that target either signaling receptors or activated Smad complexes. Among the negative regulators, Smad7 antagonizes TGF-beta signaling mainly through targeting the signaling receptors, whereas SnoN and c-Ski repress signaling at the transcriptional level through inactivation of Smad complexes. We previously found that Arkadia is a positive regulator of TGF-beta signaling that induces ubiquitin-dependent degradation of Smad7 through its C-terminal RING domain. We report here that Arkadia induces degradation of SnoN and c-Ski in addition to Smad7. Arkadia interacts with SnoN and c-Ski in their free forms as well as in the forms bound to Smad proteins, and constitutively down-regulates levels of their expression. Arkadia thus appears to effectively enhance TGF-beta signaling through simultaneous down-regulation of two distinct types of negative regulators, Smad7 and SnoN/c-Ski, and may play an important role in determining the intensity of TGF-beta family signaling in target cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad7/genética , Proteína Smad7/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Ubiquitina/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...